Applying Semantic Parsing to Question Answering Over Linked Data: Addressing the Lexical Gap
نویسندگان
چکیده
Question answering over linked data has emerged in the past years as an important topic of research in order to provide natural language access to a growing body of linked open data on the Web. In this paper we focus on analyzing the lexical gap that arises as a challenge for any such question answering system. The lexical gap refers to the mismatch between the vocabulary used in a user question and the vocabulary used in the relevant dataset. We implement a semantic parsing approach and evaluate it on the QALD-4 benchmark, showing that the performance of such an approach suffers from training data sparseness. Its performance can, however, be substantially improved if the right lexical knowledge is available. To show this, we model a set of lexical entries by hand to quantify the number of entries that would be needed. Further, we analyze if a state-of-the-art tool for inducing ontology lexica from corpora can derive these lexical entries automatically. We conclude that further research and investments are needed to derive such lexical knowledge automatically or semi-automatically.
منابع مشابه
Evaluation of a Layered Approach to Question Answering over Linked Data
We present a question answering system architecture which processes natural language questions in a pipeline consisting of five steps: i) question parsing and query template generation, ii) lookup in an inverted index, iii) string similarity computation, iv) lookup in a lexical database in order to find synonyms, and v) semantic similarity computation. These steps are ordered with respect to th...
متن کاملAMUSE: Multilingual Semantic Parsing for Question Answering over Linked Data
The task of answering natural language questions over RDF data has received wIde interest in recent years, in particular in the context of the series of QALD benchmarks. The task consists of mapping a natural language question to an executable form, e.g. SPARQL, so that answers from a given KB can be extracted. So far, most systems proposed are i) monolingual and ii) rely on a set of hard-coded...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملConvolutional Neural Tensor Network Architecture for Community-Based Question Answering
Retrieving similar questions is very important in community-based question answering. A major challenge is the lexical gap in sentence matching. In this paper, we propose a convolutional neural tensor network architecture to encode the sentences in semantic space and model their interactions with a tensor layer. Our model integrates sentence modeling and semantic matching into a single model, w...
متن کاملAbductive Matching in Question Answering
We study question-answering over semi-structured data. We introduce a new way to apply the technique of semantic parsing by applying machine learning only to provide annotations that the system infers to be missing; all the other parsing logic is in the form of manually authored rules. In effect, the machine learning is used to provide non-syntactic matches, a step that is ill-suited to manual ...
متن کامل